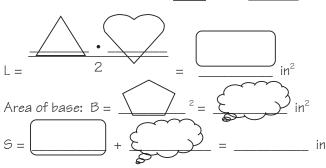
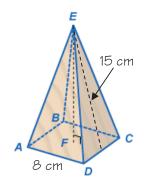
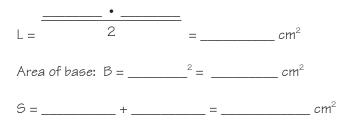

Surface Area of Pyramids


$$L = \frac{1}{2}P\ell \quad or \quad L = \frac{P\ell}{2}$$
$$S = L + B$$

Find the lateral and total surface area of each of the following:

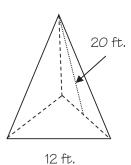

1. (square base)


Perimeter of base: $P = 4 \cdot \sqrt{}$

2. (square base)

Perimeter of base: $P = 4 \cdot \underline{\hspace{1cm}} cm = \underline{\hspace{1cm}} cm$

8 m

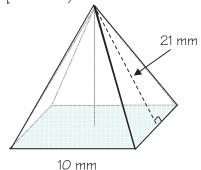

3. (square base) 12 m Perimeter of base: $P = 4 \cdot \underline{\hspace{1cm}} m = \underline{\hspace{1cm}} m$

Slant height: $\ell = \sqrt{\frac{2}{1 - \frac{2}{1 -$

Area of base: $B = ____^2 = ____ m^2$

S =_____ +____ =____ m^2

4. (equilateral triangle base)

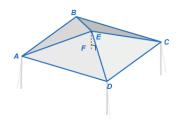


Perimeter of base: $P = 3 \cdot$ _____ ft = ____ ft

Area of base:
$$B = \frac{2\sqrt{3}}{4} = \frac{1}{2}$$

$$S =$$
_____ $+$ ___ \approx ____ ft^2

5. (square base)

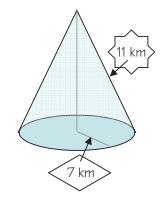

P = _____

L = _____

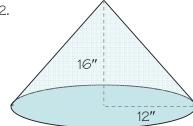
B =

S = ____

6. A fabric company needs to make a canopy in the shape of a square-based pyramid. Each **side** of the square is 48 feet and the **height** of the canopy should be 7 feet. What is the **lateral** surface area of the pyramid? (You will need to find the **slant height**.)


7. A square-based pyramid has a **lateral** surface area of 72 cm². If the **slant height** is 3 cm, what is the **total** surface area?

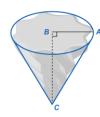
Surface Area of Cones


$$L = \pi r \ell$$
$$S = L + \pi r^2$$

Find the **lateral** and **total** surface area of each cone (leave answers in terms of π):

1.

2.



Slant height: $\ell = \sqrt{$

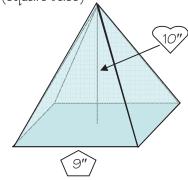
 $L = \pi \cdot \underline{\hspace{1cm}} = \underline{\hspace{1cm}} in^2$

 $S = + \pi \cdot$ $^2 = in^2$

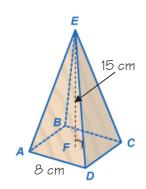
3.

AB = 3 mmAC = 10 mm

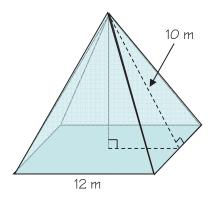
4. An ice cream cone has a lateral area of 24π cm². If the slant height is 6 cm, what is the radius of the cone?


5. Max needed a cone to cover a circle with a diameter of 8 feet. If the height of the cone was 3 feet, approximately how much materal would he need (lateral area)? Round your answer to the nearest foot.

Volume of Pyramids

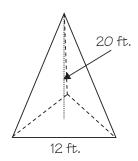

$$V = \frac{1}{3}Bh$$

Find the **volume** of each of the following:


1. (square base)

2. (square base)

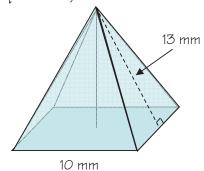
3. (square base)


Area of base: $B = ____^2 = ____ cm^2$

$$V = \frac{1}{3} \bullet \underline{\qquad} = \underline{\qquad} cm^3$$

Area of base: $B = ____^2 = ____ m^2$

Volume: $V = \frac{1}{3} \bullet _{-----} \bullet _{----} = _{-----} m^2$


4. (equilateral triangle base)

Area of base:
$$B = \frac{2\sqrt{3}}{4} = \frac{1}{2}$$

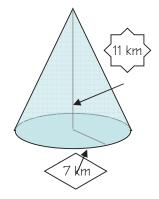
Volume:
$$V = \frac{1}{3} \cdot _{----} = _{----} ft$$

5. (square base)

h = _____

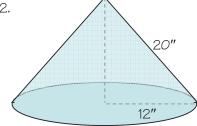
B = _____

V = ____


6. A **square**-based pyramid has a **side length** of 10 inches and a **volume** of 3300 in³. What is the **height** of the pyramid.

Volume of Cones

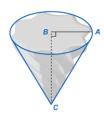
$$V = \frac{1}{3}\pi r^2 h$$


Find the **volume** of each cone (leave answers in terms of π):

1.

$$V = \frac{1}{3} \cdot \pi \cdot$$

2.



Height:
$$h = \sqrt{\frac{2}{1 - \frac{2}{1 - \frac{2}{$$

$$V = \frac{1}{3} \bullet \pi \bullet \underline{\qquad}^2 \bullet \underline{\qquad}$$

$$\frac{1}{3} \bullet \pi \bullet \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}} = \underline{\hspace{1cm}} in^{2}$$

3.

$$AB = 3 \text{ mm}$$

 $BC = 10 \text{ mm}$

4. An ice cream cone has a **volume** of 24π cm³. If the height is 6 cm, what is the radius of the cone?