$\qquad$ Date $\qquad$ Per: $\qquad$

## $1^{\text {st }}$ Six Weeks Test

1. Solve and justify the equation below

| $3(x-7)=2(3 x+9)$ |  |
| :--- | :--- |
| 1. | 1. |
| 2. | 2. |
| 3. | 3. |
| 4. | 4. |
| 5. | 5. |


| 2. Draw and label a pair of opposite rays $\overrightarrow{F G}$ and $\overrightarrow{F H}$. | 3. Name a plane that contains $A C$. |
| :---: | :---: |
| 4. Use the figure below to solve for $x$. | 5. What are the coordinates of the center of a circle, whose diameter has endpoints at $(-5,7)$ and $(8,14)$ ? |
| 6. Find the point $P$ that lies along the line segment from point $R(-5)$ to point $S$ (5) and partitions the segment in the ratio 1:4. | 7. $\overline{T A}$ has point $T$ at $(-5,8)$, and midpoint $E$ at $(2,-1)$. What are the coordinates of the other endpoint $A$ ? |

$\qquad$ Date $\qquad$ Per: $\qquad$
8. When bisecting a line segment, place the stylus on one point of the segment and set the compass width to the distance of the segment.
9. On a gridded map, position $A$ is at $(-3,2)$ and position $B$ is at $(6,3)$. Find $A B$.
10. Put the steps in order to copy a segment.

11. What geometric construction is shown in the diagram below?

$\qquad$ Date $\qquad$ Per: $\qquad$

In exercise 12-15, draw an example of each angle.

| 12. Acute Angle | 13. Obtuse Angle |
| :--- | :--- |
|  |  |
| 14. Right Angle | 15. Linear Pair |
|  |  |

In exercise 16-18, describe the following diagrams.

$\qquad$ Date $\qquad$ Per: $\qquad$
19. $\overrightarrow{B D}$ bisects $\angle A B C$. If $m \angle A B D=42^{\circ}$, what
is the measure of $\angle A B C$ ?
$\qquad$ Date $\qquad$ Per: $\qquad$

25. The pictures below show the steps of | 26. The pictures below show the steps for |
| :---: |
| constructing a congruent angle. |
| (G.5B) |

## Equations for $1^{\text {st }}$ Six Weeks Test

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Partition }
\end{array} \\
a x_{1}+b x_{x} \\
a+b
\end{gathered}
$$

$$
\frac{\text { Distance Formula }}{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

