Geometric Proofs

Fill in the blanks with the justifications and steps listed to complete each of the following two-column proofs.

1. **Given:** ∠1 and ∠2 are straight angles.

Prove: $\angle 1 \cong \angle 2$

Proof:

Statements	Reasons
1. a	1. Given
2. m∠1 = 180°, m∠2 = 180°	2. b
3. m∠1 = m∠2	3. Subst. Prop. of =
4. c	4. Def. of ≅ ∠s

^{2.} **Given:** $\angle JKL$ is a right angle.

Prove: $\angle 1$ and $\angle 2$ are complementary angles.

Two-Column Proof:

Statements	Reasons
1. ∠JKL is a right angle.	1.
2.	2. Definition of right angle
3. m∠ <i>JKL</i> = m∠1 + m∠2	3. Angle Addition Postulate
4. 90° = m∠1 + m∠2	4.
5.	5. Definition of complementary angles

3. **Given:** $\overline{AB} \cong \overline{BC}$ and $\overline{BC} \cong \overline{DE}$

Prove: $\overline{AB} \cong \overline{DE}$

Two-Column Proof:

Statements	Reasons
1.	1. Given
2. <i>AB</i> = <i>BC</i> , <i>BC</i> = <i>DE</i>	2. Definition of congruent segments
3. <i>AB</i> = <i>DE</i>	3.
4. \overline{AB} ≅ \overline{DE}	4. Definition of congruent segments

Given: V is the midpoint of \overline{SW} , and W is the midpoint of \overline{VT} .

Prove: $\overline{SV} \cong \overline{WT}$

Two-Column Proof:

Statements	Reasons
1. V is the midpoint of \overline{SW} .	1. Given
2.	2. Given
3.	3. Definition of midpoint
4. $\overline{SV} \cong \overline{WT}$	4. Transitive Property of Equality