3.3 Proofs with Parallel Lines

In Exercises 1 and 2, find the value of x that makes s parallel to t. Explain your reasoning.

In Exercises 3 and 4, decide whether there is enough information to prove that p is parallel to q. If so, state the theorem you would use.

Name:_____

5. Given: $\angle 1$ and $\angle 2$ are supplementary

Prove: $p \parallel q$

STATEMENT	REASONS
1.	1.
2. $\angle 2$ and $\angle 3$ are supplementary	2.
3. $\angle 1 \cong \angle 3$	3. Congruent Supplements Theorem
4.	4.

Given: $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 4$

6.

STATEMENT	REASON
1.	1.
$2. c \parallel d$	2.
3. <i>a</i> <i>b</i>	3.
$4. \angle 3 \cong \angle 4$	4.
5.	5. Transitive Property of Angle Congruence

Why Did The Boy Throw His Clock Out The Window?

А	В	С	D	E	F
G					

Complete each exercise. Find the answer in the answer column. Write the word under the answer in the box containing the exercise letter.

	Using the diagram, find the value of <i>x</i> that makes <i>r</i> parallel to <i>s</i> .		
11 TO	A. $m \angle 1 = 30^{\circ} \text{ and } m \angle 7 = (2x + 10)^{\circ}$		
13 PLANE	B. $m \angle 4 = 135^{\circ}$ and $m \angle 5 = (4x - 3)^{\circ}$ C. $m \angle 2 = 124^{\circ}$ and $m \angle 6 = (4x + 4)^{\circ}$		
77 BREAK	D. $m \angle 3 = 24^{\circ}$ and $m \angle 5 = (2x + 2)^{\circ}$ Use the diagram to complete the proof. Use the chart to WANTED		
6 SEE	identify the reasons. Given: $\angle 2 \cong \angle 8$ Prove: $r \parallel s$	1 TAKE	
4 AN	STATEMENTSREASONS $\angle 2 \cong \angle 8$ Given $\angle 4 \cong \angle 2$ E	2 FOREVER	
5 BIRD	$\begin{array}{c} 2 + 2 & 2 \\ 2 & 4 \\ 2 & 4 \\ r \parallel s \end{array} \qquad \qquad$	10 BECAUSE	
70 THE	1. Consecutive Interior Angles Converse (Theorem 3.8)34 $\frac{1}{2}$ 2. Alternate Interior Angles Converse (Theorem 3.6)SOUND		
12 HE	3. Transitive Property of Congruence 9 4. Transitive Property of Parallel Lines (Theorem 3.9) HOLD		
	5. Alternate Exterior Angles Converse (Theorem 3.7)		

- 6. Vertical Angles Congruence Theorem (Theorem 2.6)
- 7. Corresponding Angles Converse (Theorem 3.5)

3.4 Proofs with Perpendicular Lines

3. Your friend claims that there is only one line that can be drawn perpendicular to \overline{PQ} . Is your friend correct? Explain your reasoning.

Q P

STATEMENTS	REASONS
1.	1.
$2. a \perp c$	2.
$3. a \perp d$	3.
4.	4. Lines Perpendicular to a Transversal
	Theorem

What Snake Is The Best Mathematician?

Write the letter of each answer in the box containing the exercise number.

Complete the sentence.

- **2.** If two lines intersect to form a(n) _____ of congruent angles, then the lines are perpendicular.
- **3.** In a plane, if a transversal is perpendicular to one of two lines, then it is perpendicular to the other line.
- **4.** In a(n) ______, if two lines are perpendicular to the same line, then they are parallel to each other.

Determine which lines, if any, must be parallel.

Answers

- **R.** *r* || *s*
- **D.** perpendicular
- I. vertical pair
- **P.** longest segment
- A. plane
- **A.** $t \parallel u$
- M. straight
- **D.** $n \parallel m$
- **E.** linear pair
- A. graph
- **E.** *a* || *b*
- H. none
- $\mathbf{V}. \quad c \parallel d$
- **D.** *o* || *p*
- **A.** 3.6
- T. parallel
- $\mathbf{M}. \quad x \parallel y$
- E. $z \parallel \ell$

Copyright © Big Ideas Learning, LLC All rights reserved.

Geometry 97 Resources by Chapter