6.3 Medians and Altitudes of Triangles

In Exercises $1-4$, point P is the centroid of $\triangle A B C$. Use the given information to find the indicated measures.

1. $B L=12$

Find $B P$ and $P L$.

2. $C P=16$

Find $P L$ and $C L$.

4. $B P=102$

Find $P L$ and $B L$.

In Exercises 5-7, point Q is the centroid of $\Delta J K L$. Use the given information to find the indicated measures.
5. $A Q=21$

Find $Q L$ and $A L$.

6. $J A=72$

Find $J Q$ and $Q A$.

7. $K Q=10$

Find $Q A$ and $K A$.

\qquad Period \qquad 5.3 Medians and Altitudes of Triangles

Reteach

5-3 Medians and Altitudes of Triangles

> | $\overline{A H}, \overline{B J}$, and $\overline{C G}$ are medians |
| :--- |
| of a triangle. They each join |
| a vertex and the midpoint of |
| the opposite side. |

Theorem	Example
Centroid Theorem	
The centroid of a triangle is	
located $\frac{2}{3}$ of the distance from	
each vertex to the midpoint of	
the opposite side.	Given: $\overline{A H}, \overline{C G}$, and $\overline{B J}$ are medians of $\triangle A B C$.
Conclusion: $A N=\frac{2}{3} A H, C N=\frac{2}{3} C G, B N=\frac{2}{3} B J$	

In $\triangle A B C$ above, suppose $A H=18$ and $B N=10$. You can use the Centroid Theorem to find $A N$ and $B J$.
$A N=\frac{2}{3} A H \quad$ Centroid Thm.
$B N=\frac{2}{3} B J \quad$ Centroid Thm.
$A N=\frac{2}{3}(18) \quad$ Substitute 18 for $A H$.
$10=\frac{2}{3} B J \quad$ Substitute 10 for $B N$.
$A N=12$
Simplify.
$15=B J \quad$ Simplify.

In $\triangle Q R S, R X=48$ and $Q W=30$. Find each length.

1. PW
2. $W X$
3. $Q Z$
4. $W Z$

\qquad
\qquad

In $\triangle H J K, H D=21$ and $B K=18$. Find each length.
5. $H B$
6. $B D$
7. CK
8. $C B$

\qquad
\qquad

5-3 Medians and Altitudes of Triangles continued

$\overline{J D}, \overline{K E}$, and $\overline{L C}$ are altitudes
of a triangle. They are
perpendicular segments that join
a vertex and the line containing the side opposite the vertex.

The point of intersection of the altitudes is called the orthocenter of $\triangle J K Z$

Find the orthocenter of $\triangle A B C$ with vertices $A(-3,3), B(3,7)$, and $C(3,0)$.
Step 1 Graph the triangle
Step 2 Find equations of the lines containing two altitudes.
The altitude from A to $\overline{B C}$ is the horizontal line $y=3$.
The slope of $\overleftrightarrow{A C}=\frac{0-3}{3-(-3)}=-\frac{1}{2}$, so the slope of the allitude from B to $\overline{A C}$ is 2 . The allitude must pass through $B(3,7)$.
$y-y_{1}=m\left(x-x_{1}\right)$ Point-slope form

$y-7=2(x-3) \quad$ Substitute 2 for m and the coordinates of $B(3,7)$ for $\left(x_{1}, y_{1}\right)$.
$y=2 x+1 \quad$ Simplify.
Step 3 Solving the system of equations $y=3$ and $y=2 x+1$, you find that the coordinates of the orthocenter are $(1,3)$

Triangle $F G H$ has coordinates $F(-3,1), G(2,6)$, and $H(4,1)$.

9. Find an equation of the line containing the altitude from G to $\overline{F H}$.
10. Find an equation of the line containing the altitude from H to $\overline{F G}$.
11. Solve the system of equations from Exercises 9 and 10 to find the coordinates of the orthocenter.

Find the orthocenter of the triangle with the given vertices.
12. $N(-1,0), P(1,8), Q(5,0)$
\qquad
13. $P(-1,4), S(5,-2), T(-1,-6)$

