6.3 Medians and Altitudes of Triangles

In Exercises 1-4, point P is the centroid of $\triangle ABC$. Use the given information to find the indicated measures.

1. BL = 12

Find *BP* and *PL*.

2. CP = 16

Find PL and CL.

3. AL = 27

Find AP and PL.

4. BP = 102

Find *PL* and *BL*.

In Exercises 5-7, point Q is the centroid of ΔJKL . Use the given information to find the indicated measures.

5. AQ = 21Find QL and AL.

6. JA = 72Find JQ and QA.

7. KQ = 10 Find QA and KA.

LESSON Reteach

5-3 Medians and Altitudes of Triangles

 \overline{AH} , \overline{BJ} , and \overline{CG} are **medians** of a triangle. They each join a vertex and the midpoint of the opposite side.

The point of intersection of the medians is called the centroid of △ABC.

Theorem	Example
Centroid Theorem The centroid of a triangle is located $\frac{2}{3}$ of the distance from each vertex to the midpoint of	G N H
the opposite side.	Given: AH, CG, and BJ are medians of △ABC.
	Conclusion: $AN = \frac{2}{3}AH$, $CN = \frac{2}{3}CG$, $BN = \frac{2}{3}BJ$

In $\triangle ABC$ above, suppose AH=18 and BN=10. You can use the Centroid Theorem to find AN and BJ.

$$AN = \frac{2}{3}AH$$
 Centroid Thm.

$$BN = \frac{2}{3}BJ$$
 Centroid Thm.

$$AN = \frac{2}{3}(18)$$
 Substitute 18 for AH.

$$10 = \frac{2}{3}BJ$$
 Substitute 10 for *BN*.

$$AN = 12$$
 Simplify.

$$15 = BJ$$
 Simplify.

In \triangle QRS, RX = 48 and QW = 30. Find each length.

1. RW

WX

3. QZ

4. WZ

In $\triangle HJK$, HD = 21 and BK = 18. Find each length.

5. HB

6. BD

7. CK

8. *CB*

LESSON Reteach

Medians and Altitudes of Triangles continued

JD, KE, and LC are altitudes of a triangle. They are perpendicular segments that join a vertex and the line containing the side opposite the vertex.

Find the orthocenter of $\triangle ABC$ with vertices A(-3, 3), B(3, 7), and C(3, 0).

Step 1 Graph the triangle.

Step 2 Find equations of the lines containing two altitudes.

The altitude from A to \overline{BC} is the horizontal line y = 3.

The slope of $\overrightarrow{AC} = \frac{0-3}{3-(-3)} = -\frac{1}{2}$, so the slope of the altitude from B to \overline{AC} is 2. The altitude must pass through B(3, 7).

y-7=2(x-3) Substitute 2 for m and the coordinates of B(3,7) for (x_1,y_1) .

$$y = 2x + 1$$
 Simplify.

Step 3 Solving the system of equations y = 3 and y = 2x + 1, you find that the coordinates of the orthocenter are (1, 3).

Triangle FGH has coordinates F(-3, 1), G(2, 6), and H(4, 1).

- **9.** Find an equation of the line containing the altitude from G to \overline{FH} .
- Find an equation of the line containing the altitude from H to FG.
- Solve the system of equations from Exercises 9 and 10 to find the coordinates of the orthocenter.

Find the orthocenter of the triangle with the given vertices.

13.
$$R(-1, 4)$$
, $S(5, -2)$, $T(-1, -6)$