Cornell Notes	Topic/Objective: 7.4 Properties of Special	Name:		
Y	Parallelograms	Class/Period: Geometry		
AVID® Decades of College Dreams		Date:		
, ,	Essential Question: What are the properties of the diagonals of rectangles, rhombuses, and squares?			
Questions:	Notes: Rhombuses, Rectangles, and Squar	es		
	A rhombus is a A rectangle is parallelogram with parallelogram four congruent sides. four right ang	with with four congruent sides		
	Corollary 7.2 Rhombus Corollary			
		A quadrilateral is a rhombus if and only if it has four congruent sides. A B		
	ABCD is a rhombus if and only if $\overline{AB} \cong \overline{BC}$	$ABCD$ is a rhombus if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$.		
	Corollary 7.3 Rectangle Corollary	Corollary 7.3 Rectangle Corollary		
	A quadrilateral is a rectangle if and only if it has	A quadrilateral is a rectangle if and only if it has four right angles. A B B		
	ABCD is a rectangle if and only if $\angle A$, $\angle B$, $\angle C$	C, and $\angle D$ are right angles.		
	Corollary 7.4 Square Corollary			
	A quadrilateral is a square if and only if it is a	a rhombus and a rectangle.		
	ABCD is a square if and only if $\overline{AB} \cong \overline{BC} \cong \angle A, \angle B, \angle C$, and $\angle D$ are right angles.	$ \stackrel{\cdot}{=} \overline{CD} \cong \overline{AD} \text{ and } $		
Summary:				
-				

Questions:	Notes: The Venn diagram below illustrates some important relationships among parallelograms rhombuses, rectangles, and squares. For example, you can see that a square is a rhombuse because it is a parallelogram with four congruent sides. Because it has four right angles, square is also a rectangle. parallelograms (opposite sides are parallel) rhombuses (4 right angles)	
	EXAMPLE 1 Using Properties of Special Quadrilaterals For any rhombus $QRST$, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning. a. $\angle Q \cong \angle S$ b. $\angle Q \cong \angle R$ SOLUTION	
	a. By definition, a rhombus is a parallelogram with four congruent sides. By the Parallelogram Opposite Angles Theorem (Theorem 7.4), opposite angles of a parallelogram are congruent. So, $\angle Q \cong \angle S$. The statement is <i>always</i> true.	
	b. If rhombus $QRST$ is a square, then all four angles are congruent right angles. So, $\angle Q \cong \angle R$ when $QRST$ is a square. Because not all rhombuses are also squares, the statement is <i>sometimes</i> true.	
Summary:	•	

a (1	I N d
Questions:	Notes: The Venn diagram below illustrates some important relationships among parallelograms, rhombuses, rectangles, and squares. For example, you can see that a square is a rhombus because it is a parallelogram with four congruent sides. Because it has four right angles, a square is also a rectangle.
	parallelograms (opposite sides are parallel)
	rhombuses (4 congruent sides) squares (4 right angles)
	EXAMPLE 1 Using Properties of Special Quadrilaterals
	For any rhombus <i>QRST</i> , decide whether the statement is <i>always</i> or <i>sometimes</i> true. Draw a diagram and explain your reasoning.
	a. $\angle Q \cong \angle S$ b. $\angle Q \cong \angle R$
	SOLUTION
	a. By definition, a rhombus is a parallelogram with four congruent sides. By the Parallelogram Opposite Angles Theorem (Theorem 7.4), opposite angles of a parallelogram are congruent. So, $\angle Q \cong \angle S$. The statement is <i>always</i> true.
	b. If rhombus $QRST$ is a square, then all four angles are congruent right angles. So, $\angle Q \cong \angle R$ when $QRST$ is a square. Because not all rhombuses are also squares, the statement is <i>sometimes</i> true.
Summary:	
<u> </u>	

Questions:	Notes:			
	Theorem 7.11 Rhombus Diagonals Theorem			
	A parallelogram is a rhombus if and only if its diagonals are perpendicular.			
	□ ABCD is a rhombus	s if and only if $\overline{AC}\perp\overline{A}$	BD.	D ** C
		nombus Opposite	_	
	A parallelogram is a rho opposite angles.	ombus if and only if eac	ch diagonal bisects a pair of	A
	$\Box ABCD$ is a rhombus \overline{BD} bisects $\angle ABC$ and		ets $\angle BCD$ and $\angle BAD$, and	D ** C
	bb disceis ZABC and	ZADC.		
	EXAMPLE 3	Finding Angl	e Measures in a Rho	mbus
	Find the measures	of the numbered an	gles in rhombus <i>ABCD</i> .	
	SOLUTION			
		Diagonals Theorem	and the Rhombus Opposit	a Angles Theorem to
	find the angle meas	•	and the Khomous Opposit	e Angles Theorem to
		$m \angle 1 = 90^{\circ}$	The diagonals of a rhombus	s are perpendicular.
		$m\angle 2 = 61^{\circ}$	Alternate Interior Angles Th	eorem (Theorem 3.2)
		<i>m</i> ∠3 = 61°	Each diagonal of a rhombus opposite angles, and $m \angle 2$	•
	$m \angle 1 + m \angle 3$	$+ m \angle 4 = 180^{\circ}$	Triangle Sum Theorem (The	orem 5.1)
	90° + 61°	$+ m\angle 4 = 180^{\circ}$	Substitute 90° for <i>m</i> ∠1 and	d 61° for <i>m∠</i> 3.
		$m\angle 4 = 29^{\circ}$	Solve for $m \angle 4$.	
	So, $m ∠ 1 = 90$	$0^{\circ}, m \angle 2 = 61^{\circ}, m \angle$	$63 = 61^{\circ}$, and $m \angle 4 = 29^{\circ}$.	
	Theorem 7.13 Re	ectangle Diagonals	s Theorem	
	A parallelogram is a re	ctangle if and only if its	s diagonals are congruent.	$A \longrightarrow B$
	☐ ABCD is a rectangle	e if and only if $\overline{AC} \cong \overline{AC}$	\overline{BD} .	+
	Notes:			D ** C
	1			
Summary:				

Questions:	Notes:		
	EXAMPLE 3 Findi	ing Angle Measures in a Rhombus	
	Find the measures of the nu	Find the measures of the numbered angles in rhombus <i>ABCD</i> .	
	SOLUTION		
		ls Theorem and the Rhombus Opposite Angles Theorem to	
	<i>m</i> ∠1 =	= 90° The diagonals of a rhombus are perpendicular.	
	<i>m</i> ∠2 =	= 61° Alternate Interior Angles Theorem (Theorem 3.2)	
	<i>m</i> ∠3 =	= 61° Each diagonal of a rhombus bisects a pair of opposite angles, and $m \angle 2 = 61^{\circ}$.	
	<i>m</i> ∠1 + <i>m</i> ∠3 + <i>m</i> ∠4 =	= 180° Triangle Sum Theorem (Theorem 5.1)	
	90° + 61° + <i>m</i> ∠4 =	= 180° Substitute 90° for $m \angle 1$ and 61° for $m \angle 3$.	
	<i>m</i> ∠4 =	$=29^{\circ}$ Solve for $m\angle 4$.	
	In rectangle $QRST$, $QS = 5x$. Find the lengths of the diagonal states are smaller to the diagonal states.	•	
	SOLUTION	T	
	By the Rectangle Diagonals x so that $\overline{QS} \cong \overline{RT}$.	s Theorem, the diagonals of a rectangle are congruent. Find	
	QS = RT	Set the diagonal lengths equal.	
	5x - 31 = 2x + 11	Substitute $5x - 31$ for QS and $2x + 11$ for RT.	
	3x - 31 = 11	Subtract 2x from each side.	
	3x = 42	Add 31 to each side.	
	x = 14	Divide each side by 3.	
	When $x = 14$, $QS = 5(14)$	-31 = 39 and $RT = 2(14) + 11 = 39$.	
	Fach diagonal has a ler	ength of 39 units.	
	Lacii diagonai nas a lei		
	Lacii diagonai nas a for		

Questions:	Notes:	
	Decide whether $\square ABCD$ with vertices $A(-2, 6)$, $B(6, 8)$, $C(4, 0)$, and $D(-4, -2)$ is a rectangle, a rhombus, or a square. Give all names that apply.	
	SOLUTION	
	 Understand the Problem You know the vertices of □ABCD. You need to identify the type of parallelogram. Make a Plan Begin by graphing the vertices. From the graph, it appears that all four sides are congruent and there are no right angles. Check the lengths and slopes of the diagonals of □ABCD. If the diagonals are congruent, then □ABCD is a rectangle. If the diagonals are perpendicular, then □ABCD is a rhombus. If they are both congruent and perpendicular, then □ABCD is a rectangle, a rhombus, and a square. 	
	3. Solve the Problem Use the Distance Formula to find AC and BD.	
	$AC = \sqrt{(-2-4)^2 + (6-0)^2} = \sqrt{72} = 6\sqrt{2}$	
	$BD = \sqrt{[6 - (-4)]^2 + [8 - (-2)]^2} = \sqrt{200} = 10\sqrt{2}$	
	Because $6\sqrt{2} \neq 10\sqrt{2}$, the diagonals are not congruent. So, $\square ABCD$ is not a rectangle. Because it is not a rectangle, it also cannot be a square. Use the slope formula to find the slopes of the diagonals \overline{AC} and \overline{BD} . slope of $\overline{AC} = \frac{6-0}{-2-4} = \frac{6}{-6} = -1$ slope of $\overline{BD} = \frac{8-(-2)}{6-(-4)} = \frac{10}{10} = 1$ Because the product of the slopes of the diagonals is -1 , the diagonals are perpendicular. So, $\square ABCD$ is a rhombus.	
	A(-2, 6) B(6, 8) A(-2, 6) C(4, 0) x D(-4, -2) A D(-4, -2)	
Summary:		
y -		

ı