7.4 Properties of Special Parallelograms

diagram and EXPEAN TOOK REASONING. (See Examp	
1. $\angle L \cong \angle M$	2 . $\angle K \cong \angle M$
3. $\overline{JM} \cong \overline{KL}$	$4. \overline{JK} \cong \overline{KL}$
5. $\overline{JL} \cong \overline{KM}$	$6. \angle JKM \cong \angle LKM$

In exercises 1-6, for any rhombus *JKLM, decide whether the statement is always* or *sometimes* true. Draw and diagram and EXPLAIN YOUR REASONING. (See Example 1)

$11 /W \simeq /X$	12 $\overline{WX} \simeq \overline{YZ}$
13. $\overline{WX} \simeq \overline{XY}$	14. $\overline{WY} \simeq \overline{XZ}$
15. $\overline{WY} \perp \overline{XZ}$	16. $\angle WXZ \cong \angle YXZ$

In exercises 11-16, for any rectangle *WXYZ, decide whether the statement is always* or *sometimes* true. Draw and diagram and EXPLAIN YOUR REASONING.

	reises if zo, into the tengins of the diagonats of the	cciang	
17.	WY = 6x - 7	17.	WY = 14x + 10
	XZ = 3x + 2		XZ = 11x + 22
17.	WY = 24x - 8	17.	WY = 16x + 2
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$
17.	WY = 24x - 8 $XZ = -18x + 13$	17.	WY = 16x + 2 $XZ = 36x - 6$

In Exercises 17-20, find the lengths of the diagonals of rectangle WXYZ. (See Example 5)

In Exercise 19-23, name each quadrilateral (*parallelogram, rectangle, rhombus,* or *square*) for which the statement is always true.

- 18. It is equiangular.
- 19. It is equiangular and equilateral.
- 20. The diagonals are perpendicular.
- 21. Opposite sides are congruent.
- 22. The diagonals bisect each other.
- 23. The diagonals bisect opposite angles.

In Exercise 24 & 25, decide whether $\Box JKLM$ is a rectangle, a rhombus, or a square. Give all names that apply. Explain your reasoning. (See Example 6)

24.
$$J(-4,2), K(0,3), L(1,-1), M(-3,-2)$$

25. J(3,1), K(3,-3), L(-2,-3), M(-2,1)

