Name

Date

CPCTC Practice

Informal Proofs

- 1. Given: $\overline{AB} \cong \overline{CB}$, $\overline{EB} \cong \overline{DB}$
 - a) Mark the triangles.
 - b) What other corresponding parts are congruent?
 - c) Why are the triangles congruent?
 - d) Why is $\overline{AE} \cong \overline{CD}$?
- 2. Given: $\angle R \cong \angle T$, $\angle W \cong \angle V$, $\overline{RW} \cong \overline{TV}$
 - a) Mark the triangles.
 - b) Why are the triangles congruent?
 - c) Why is $\angle RSW \cong \angle TSV$?
- 3. Given: $\overline{AB} \cong \overline{CD}$, $\angle BAC \cong \angle DCA$
 - a) Mark the triangles.
 - b) What other corresponding parts are congruent?
 - c) Why are the triangles congruent?
 - d) Why is $\overline{AD} \cong \overline{CB}$?
- 4. Given: $\overline{PU} \cong \overline{PT}$, $\angle UPS \cong \angle TPS$
 - a) Mark the triangles.
 - b) What other corresponding parts are congruent?
 - c) Why are the triangles congruent?
 - d) Why is $\overline{US} \cong \overline{TS}$?

Circle the correct answer choice.

- 9. Which of the following is not valid for proving that triangles are congruent?
 - A) HL B) AAA C) ASA D) SAS
- 5. If $\Delta JKL \cong \Delta JML$, what reason justifies the statement $\angle LKJ \cong \angle LMJ$?
 - A) Definition of bisectsB) CPCTCC) ASAD) Reflet
 - C) ASAD) Reflexive Property

- 6. What information would allow you to prove $\Delta RST \cong \Delta PQT$ by SAS?
 - A) T is the midpoint of \overline{SQ} .C) T bisects \overline{SQ} .B) T is the midpoint of \overline{RP} .D) T bisects both \overline{SQ} and \overline{RP} .

- 7. Given: ΔDEF and ΔHJK . To use CPCTC to prove $\angle F \cong \angle K$, you must first prove $\Delta DEF \cong \Delta HJK$.
 - A) True B) False

#11:

Given: $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$ Prove: $\overline{XY} \cong \overline{ZW}$

Proof:

1. $\underline{XZ} \cong \overline{XZ}$ 3. $\Delta XWZ \cong \underline{XZ}$ 4. $\underline{XZ} \cong \underline{XZ}$

- 1. Given
- 2. _____
- 3. _____
- 4. _____

15. GIVEN: $\overline{RT} \cong \overline{RV}$ TS $\cong \overline{VS}$ PROVE: $\angle RST \cong \angle RSV$

STATEMENTS	REASONS

A#9-5; Pg. 2

16. GIVEN: BV bisects ∠EBO		
BE ≅ BO		
PROVE : $\triangle BEV \cong \triangle BOV$		

STATEMENTS	REASONS

