Effects on Slope

Notes: Linear Parent Function: f(x) = x

Written in Slope - Intercept Form: f(x) = mx + b

$$y = x \text{ or } f(x) = x$$

$$f(bx) =$$

$$af(x) =$$

Notes: How to Write The New Function

Inside Multiplication: f(bx)

$$f(x) = 3x \qquad g(x) = f(2x)$$

$$f(x) = 3x$$
 $g(x) = f(2x)$ $f(x) = 5x - 1$ $g(x) = f(2x)$

$$g(x) =$$
 $g(x)$

$$g(x) = 5(2x) - 1 =$$

$$g(x) = 3(2x) =$$
 $g(x) = 5(2x) - 1 =$

Outside Multiplication:
$$af(x)$$

$$f(x) = 3x \quad g(x) = 2f(x)$$

g(x): Steeper Less Steep

$$f(x) = 3x$$
, $g(x) = 2f(x)$ $f(x) = 5x - 1$, $g(x) = 2f(x)$

$$g(x) = 2(3x) = \underline{\hspace{1cm}}$$

$$g(x) = 2(3x) =$$
 $g(x) = 2(5x - 1) =$

$$1. f(x) = x$$

rotation

origin

$$g(x) = f(3x) = \underline{\hspace{1cm}}$$

$$2. f(x) = x$$

rotation

origin

m=____ b= ____

$$g(x) = 3f(x) = \underline{\hspace{1cm}}$$

m=____ b= ____

g(x): Steeper Less Steep Same Steepness

rotation about the origin

m=____ b= ___ m=____ b= ___

4. f(x) = 2x $g(x) = 3f(x) = \underline{\hspace{1cm}}$

g(x): Steeper **Less Steep** Same Steepness

g(x): Steeper **Less Steep** Same Steepness

- 11. f(x) = 2x 5 $g(x) = f(\frac{1}{3}x) =$
 - m=____ b=____
- m=____ b= ___
- - m=____ b= ____
- __ b= ___

g(x): Steeper **Less Steep**

Reflection: What do you remember?

- 1. When do you replace the x with an expression?
- 2. When do you use the distributive property?
- 3. When is there a rotation about the x-axis?
- 4. When is there a rotation about the y-axis?
- 5. When is there a rotation about the origin?
- 6. When will there be a reflection?

Guided Practice: Effects on Slope

Write the new function and determine the steepness.

1.
$$f(x) = x$$

 $g(x) = f(2x) =$ _____

$$m = ___$$

 $m = ___$

Same Steepness

2.
$$f(x) = x$$

 $g(x) = 2f(x) =$ _____

Write the new function and determine the steepness.

$$m = \underline{\hspace{1cm}}$$
 $m = \underline{\hspace{1cm}}$

Same Steepness

g(x): Steeper **Less Steep**

g(x): Steeper **Less Steep**

Write the new function and determine the steepness.

3.
$$f(x) = 2x + 3$$

rotation

origin

about the

$$m =$$

$$g(x) = f(2x) =$$
______ $m =$ _____

Write the new function and determine the steepness.

4.
$$f(x) = 2x + 3$$

rotation

origin

about the

$$m =$$

$$g(x) = 2f(x) = \underline{\hspace{1cm}}$$

$$m = \underline{\hspace{1cm}}$$

g(x): Steeper **Less Steep** Same Steepness

Write the new function and determine the steepness.

g(x): Steeper Less Steep Same Steepness

Write the new function and determine the steepness.

7.
$$f(x) = x$$

$$m = \underline{\hspace{1cm}}$$

$$m = \underline{\hspace{1cm}}$$

$$g(x) = f(-x) =$$
______ $m =$ ____

g(x): Steeper Less Steep

Same Steepness

Write the new function and determine the steepness.

 $g(x) = -f(x) = \underline{\qquad} \quad m = \underline{\qquad}$

Write the new function and determine the steepness.

9.
$$f(x) = 2x + 3$$

origin

$$m = _$$

$$g(x) = f(-x) = \underline{\hspace{1cm}}$$

$$10.f(x) = 2x + 3$$

8. f(x) = x

$$m =$$

$$g(x) = -f(x) = \underline{\hspace{1cm}}$$

$$m = \underline{\hspace{1cm}}$$

Less Steep

Same Steepness reflection across the x-axis

What conclusions can you make about the steepness of a line with regards to its slope?

What conclusions can you make about the effects | What conclusions can you make about the effects that **f(bx)** has on the graph of a line?

that **af(x)** has on the graph of a line?